ADA COUNTY HIGHWAY DISTRICT $13^{\text {th }}$ STREET TRAFFIC CALMING CONCEPT STUDY: FORT STREET TO HILL ROAD

Boise, Idaho

This traffic calming concept study and plan was a collaborative effort between the Ada County Highway District and the City of Boise with assistance from HDR Engineering, Inc. Valuable input was contributed to this neighborhood plan by neighborhood residents and the general public.

Project Sponsor:
3775 Adams Street
Garden City, Idaho 83714
208.387.6100

ACHD TEAM

Brooke Green, MBA, PCED, Senior Transportation Planner
Christy Foltz-Ahlrichs, Senior Communication Specialist
Josh Saak, P.E., P.T.O.E., Traffic Design Engineer
John Wasson, Assistant Traffic Engineer
Sakena Lesmeister, Project Manager
Matt Degen, Survey Party Chief
Kayla Kinkead, Transportation Planning Intern

Project City:
150 N. Capitol Blvd.
Boise, Idaho 83701
208.384.3830

City of Boise Team:
Karen Gallagher, Associate Transportation Planner
Zach Piepmeyer, P.E., Associate Transportation Planner

Consultant:
412 E. Parkcenter Blvd. Suite 100
Boise, Idaho 83706
208.387.7000

HDR Team:
Cameron Waite, P.E., P.T.O.E.
Stephanie Borders, Senior Public Coordinator
Carrie Applegate, Public Involvement Coordinator

13th St. Traffic Calming Concept Studies

13th Street Data Collection, Existing Conditions and Alternatives Concepts

July 3, 2018

Introduction

The Ada County Highway District (ACHD) is seeking to develop a traffic calming concept study for $13^{\text {th }}$ St. from Fort St. to the Hill Road and $15^{\text {th }}$ St. intersection. The purpose of this study is to conduct neighborhood outreach to consider various traffic calming measures along $13^{\text {th }} \mathrm{St}$. This concept study is the result of neighborhood residents reaching out to ACHD, developing and presenting the necessary petitions to initiate an ACHD traffic investigation, and the results of that investigation. A vicinity map and study area is presented in Figure 1.

Data Collection

Data Requested From Project Team Members

ACHD provided the following data:

- ACHD's completed traffic investigation. It includes:
- Study period traffic volumes, average daily traffic (ADT) and a.m. and p.m. peak hour volumes
- Collected vehicular speeds and speed evaluations for the study period
- Police citation data pertinent to the study
- Current right-of-way information in GIS
- Current aerial images for area of study
- Existing storm drain facilities and outfalls within the study area

Data Collected by HDR

- Existing physical conditions, including:
- Lane configurations and widths
- Speed limits
- Curb-to-curb width (measured to the top back of curb)
- On-street parking locations
- Sidewalk locations and widths
- Bicycle facilities and widths
- Existing intersection configurations and control (stop control, signal control)
- Crosswalk location and type

Study Area Map

Legend

- Signal Control

Stor Stop Control on
side streets
Marked Pedestrian Crossing

Details of the field review are presented in Table 2 attached at the end of this memo.

Existing Conditions

Existing Physical Conditions

Posted Speed Limit

The speed limit is posted as 20 miles per hour (mph) throughout the study corridor.

Roadway Widths

$13^{\text {th }}$ Street is consistently 34 feet wide from the top of back of curb to the top back of curb, which provides 30 feet of asphalt roadway width from the lip of gutter to the lip of gutter. Variations to this width are found where there are bulb-outs at intersections and the street narrows 24 feet wide from the top of back of curb to the top back of curb, which provides 20 feet of asphalt roadway width from the lip of gutter to the lip of gutter. These bulb-outs are found in the Hyde Park area on the north side of the Alturas St. intersection, on the north and south sides of the Eastman St. intersection, and on the south side of the Brumback St. intersection.
$13^{\text {th }}$ St. north of Fort St. widens to 44 feet from top back of curb to top back of curb to develop a southbound left turn lane at the Fort St. intersection.

North of Irene St. the sidewalk on the east side within Camel's Back Park ends and the street includes a 3 foot wide shoulder and then is graded into the adjacent terrain. The asphalt width in this area from where $13^{\text {th }} \mathrm{St}$. transitions into Hill Road up to $15^{\text {th }}$ St. includes a 14 foot wide southbound lane, an 11 foot wide northbound lane, and a 3 foot shoulder.

Right-of-Way Widths

The right-of-way width is 60 feet from Fort St. to Heron St. Along the Camel's Back Park frontage from Heron St. to Irene St. the right-of-way is 40 feet wide and the sidewalk in the park is on the park property. North of Irene St. the right-of-way varies from 40 feet wide to 55 feet wide to 65 feet wide.

Sidewalk Locations and Widths

Sidewalks are consistent along both sides of $13^{\text {th }}$ St. from Fort St. to Irene St. They vary from 5 feet wide to 8 feet wide. Within the Hyde Park area the sidewalks widen to 10 feet and even 15 feet wide in front of the various restaurants, some of which offer outdoor seating. North of Irene St. the sidewalk on the east side ends. The 5 foot wide attached sidewalk on the west side continues along $13^{\text {th }} \mathrm{St}$. and Hill Road all the way to $15^{\text {th }} \mathrm{St}$. Most of the sidewalks in the study area are attached to the curb and gutter with a few areas of detached sidewalk.

Bicycle Facility Locations and Widths

The entire length of $13^{\text {th }} \mathrm{St}$. in the study area includes shared-lane markings or sharrows in each direction where the bicyclists share the travel lane with vehicles.

Transit Facilities and Service

Valley Regional Transit (VRT) operates the Hyde Park Route 14 that provides service from Downtown Boise through the North End to Bogus Basin Road and travels along $13^{\text {th }}$ St. from Fort St. to Brumback St. Bus stops are located at the Fort St., Resseguie St., Sherman St., and Brumback St. intersections.

Summary of ACHD Traffic Investigation

ACHD completed a traffic investigation of this corridor following requests from residents. Vehicle volume counts and radar speed studies were completed at the following locations (results included below):

- North of Fort St. in April 2015
- ADT $=5,119$
- Peak hour volume $=727$ vehicles per hour (vph)
- Average volume per hour $=213 \mathrm{vph}$
- Average speed $=29 \mathrm{mph}$ northbound $/ 17 \mathrm{mph}$ southbound
- Peak hour average speed = 25 mph
- $85^{\text {th }}$ Percentile speed $=35 \mathrm{mph}$ northbound $/ 22 \mathrm{mph}$ southbound
- $95^{\text {th }}$ Percentile speed $=39 \mathrm{mph}$ northbound $/ 24 \mathrm{mph}$ southbound
- North of Fort St. in October 2015
- ADT = 4,972
- Peak hour volume $=527 \mathrm{vph}$
- Average volume per hour $=207 \mathrm{vph}$
- Average speed $=21 \mathrm{mph}$ northbound $/ 25 \mathrm{mph}$ southbound
- Peak hour average speed $=23 \mathrm{mph}$
- $85^{\text {th }}$ Percentile speed $=24 \mathrm{mph}$ northbound $/ 30 \mathrm{mph}$ southbound
- $95^{\text {th }}$ Percentile speed $=27 \mathrm{mph}$ northbound $/ 33 \mathrm{mph}$ southbound
- North of Ada St. in December 2014
- ADT = 4,626
- Peak hour volume $=535 \mathrm{vph}$
- Average volume per hour $=193 \mathrm{vph}$
- Average speed = 22 mph
- Peak hour average speed $=22 \mathrm{mph}$ northbound $/ 23 \mathrm{mph}$ southbound
- $85^{\text {th }}$ Percentile speed $=26 \mathrm{mph}$
- $95^{\text {th }}$ Percentile speed $=28 \mathrm{mph}$
- South of Bella St. in October 2015
- ADT = 3,829
- Peak hour volume $=407 \mathrm{vph}$
- Average volume per hour $=160 \mathrm{vph}$
- Average speed $=21 \mathrm{mph}$
- Peak hour average speed $=18 \mathrm{mph}$ northbound $/ 17 \mathrm{mph}$ southbound
- $85^{\text {th }}$ Percentile speed $=26 \mathrm{mph}$
- $95^{\text {th }}$ Percentile speed $=27 \mathrm{mph}$

ACHD's investigation found that there was substantial support for traffic calming from the residents along $13^{\text {th }}$ St. based on the petition received. The volumes and speeds collected met the traffic calming criteria in place at the time they were collected. These results led to the current $13^{\text {th }}$ St. Traffic Calming Concept Study.

Summary of Citation Data

The Boise Police Department provided citation data for the segment of $13^{\text {th }}$ Street that transitions into Hill Road from Heron Street to $15^{\text {th }}$ Street. During 2016, 2017, and the first 3 months of 2018 there were 184 citations issued to drivers on this segment.

- 153 were at Hill Road and $14^{\text {th }}$ St. (83%)
- 110 citations (60%) were issued for speeds exceeding the maximum posted speed
- 36 citations (20%) were issued for not properly using vehicle safety restraints
- 31 of those citations (17%) were issued for not properly using vehicle safety restraints with an occupant under 18 years of age
- 24 citations (13%) were issued failing to provide proof of insurance.

Crash Analysis

Crash history data for the years 2011 to 2016 was collected for the corridor. Overall there were 51 crashes along $13^{\text {th }}$ St. Sixteen crashes were injury crashes and 35 crashes were property damage only. The most common types of crashes included angle crashes or angle turning at intersections (15), striking parked cars (14), and struck bicyclists or pedestrians (7). The most common causes of these crashes include failure to yield (14), inattention (11), and failure to obey stop sign (6).

Thirty-two crashes were intersection related with 9 at the Fort St. intersection, 5 at Heron St. intersection, 4 at the Brumback St. intersection, and 4 at the Resseguie St. intersection. The remaining 10 crashes occurred at other intersections. Thirteen crashes not at intersections were struck parked cars and 3 were other struck objects.

The Fort St. intersection crashes included 4 struck bicyclists, 3 head-on turning crashes, and 2 angle crashes. The Heron St. intersection crashes included 1 struck bicyclist, 3 angle crashes, and 1 rear-end crash. The Brumback St. intersection crashes included 1 struck pedestrian crash and 3 angle crashes. The Resseguie St. crashes included 1 struck bicyclist and 3 angle crashes. The crash history is summarized in Figure 2. Of the 6 bicycle crashes, 5 were intersection related, and one pedestrian crash was intersection related.

From 2011-2016 there were 52 crashes recorded on 13th St., 32 occurring at intersections.

Crash clusters can be seen at:
-Fort St. \& $13^{\text {th }}$
-13th between Resseguie and Ada

- Eastman \& $13^{\text {th }}$
- North of Brumback \& $13^{\text {th }}$
- Heron \& $13^{\text {th }}$

The most common types of crashes in the corridor are:

- Struck objects (mostly parked cars)
- Angle crashes at intersections and driveways
- Bicycle crashes

The most common causes of crashes in the corridor are:

- Failure to yield to pedestrians
- Failure to yield to bicycles
- Failure to yield to other vehicles
- Inattention
- Failure to obey stop signs

00080
000

Public Information Meeting \# 1

ACHD held a public involvement meeting (PIM) for this concept study on March 8, 2018. It was an open house with two separate presentations and group breakout sessions facilitated by ACHD and HDR staff. The majority of those attending were residents of the area and the transportation modes they use to travel along $13^{\text {th }}$ St. was fairly even between cars (38), walking (37), and biking (29). Solutions that support and enhance pedestrian visibility and safety were well supported, including bulb outs, moving parking further from the intersections for better sight distances, and mark crosswalks more clearly. More enforcement of the speed limit was also a popular response. Solutions identified as not good fits include speed bumps, traffic signals or stop signs, and widening the street.

A common observation from residents was that traffic was calm through the Hyde Park area but speeds increased as vehicles traveled north and south from this area. The curve at the north end of the study where Hill Road becomes $13^{\text {th }}$ Street was also identified as a high speed area. There is no curb, gutter, or sidewalk on the east side leading to Camel's Back Park and no parking is allowed along the park frontage to Heron St. This wide area makes people feel they have more room and can travel at faster speeds.

Details of the feedback of attendees at the PIM and comments received are presented in Figure 3.

Alternative Concept Development \& Refinement

Based on the PIM \# 1 feedback, the wide range of typical traffic calming treatments, and discussions with the project team, alternative concepts were developed and refined for implementation along $13^{\text {th }}$ St. in the study area.

Alternatives Considered But Not Carried Forward

Alternatives considered but not carried forward, along with the reasoning for not moving forward with them, are presented in Figure 4.

Primary Reasons for Using $13^{\text {th }}$ Street

"Traffic calming is a BandAid for a much more serious issue (poor growth and development management) that isn't getting addressed in an overall manner by ACHD or the City of Boise"

99 " $13^{\text {th }}$ Street is a gem of the north end. Any efforts to calm traffic should prioritize pedestrians above all others."

"Speed bumps are a nuisance....does not decrease speed."

Is traffic calming

Solutions we heard that may be a good fit
Photo radar to catch speeders
Do nothing-there isn't a
problem

- More enforcement of speed
limit by police
- Keep it multi-use and make pedestrians more visible
- Make it one-way
- Move bikes to $12^{\text {th }}$ and $14^{\text {th }}$ and add stop signs and bulb outs
- Preserye the historical couts

Preserve Re historical character
of Hyde Park

- Move parking further from intersections to improve sigh distance
- Add a stop or signal to make it less of a thoroughfare
- Limit hours for commercia vehicles
- Ticket jaywalkers
- Create more obviously marked
pedestrian crossings
Enforce existing laws on speed
and jaywalking
- Turn it into a pedestrian mall

99
"Problem is with continued building in the foothills is traffic funneling down and through established neighborhoods, like $13^{\text {h }}$ Street."

What type of
transportation do you typically use on $13^{\text {th }}$ Street? (choose all that apply)
50 Car

What solutions would NOT be a good fit?

- Speed bumps
- Anything that diverts drivers to adjacent streets
- Stoplights
- Stop signs
- Widening street
- Closing street

Half dozen comments came from residents o Harrison Boulevard who believe traffic in the area should be addressed holistically as a North End Traffic Plan. Commenters are concerned that any traffic calming solution on $13^{\text {th }}$ Street will create problems on adjacent streets.

Speed Bumps

Not effective unless installed at regular intervals along the street at 300 foot spacing. This is not practical for $13^{\text {th }}$ Street's character or usage.

Closing $13^{\text {th }}$ Street to Motor Vehicles

Closing $13^{\text {th }}$ is not a viable option for a number of reasons including that it would limit access to existing businesses, homes and Camel's Back Park. It would also divert traffic to adjacent parallel streets causing congestion.

Traffic Signals

The traffic volumes on $13^{\text {th }}$ Street do not require traffic signal control. Traffic signals would disrupt the flow of traffic on 13th Street and may divert traffic to parallel streets.

Stop Signs on $13^{\text {th }}$ Street Approaches to Intersections

The traffic volumes do not require stop signs on the $13^{\text {th }}$ Street approaches. They would disrupt the flow of traffic on $13^{\text {th }}$ Street and may divert traffic to parallel streets.

Alternatives Carried Forward

Radar Speed Limit Signs

A radar speed sign is an interactive sign, generally constructed of a series of LEDs that displays vehicle speed as motorists approach. The purpose of radar speed signs is to slow cars down by making drivers aware when they are driving at speeds above the posted limits. They are used as a traffic calming device in addition to or instead of physical devices such as speed humps, speed cushions, speed tables, and speed bumps. Installing these signs at each end of the study area will remind motorists of the speed limit and help slow them down to 20 mph . Proposed approximate installation locations are presented in Figure 5.

Bulb Outs

Bulb-outs are an extension of the curb or the sidewalk into the street, usually at an intersection, that narrows the road, inhibits fast turns, and shortens the crossing distance for pedestrians. Some benefits of bulb outs include:

- They slow and calm traffic by narrowing the street width
- They provide space to install ADA compliant pedestrian ramps on existing sidewalks where they are otherwise too narrow
- They provide additional visibility and protection for pedestrians when crossing the street
- They reduce the exposure of pedestrians to vehicular traffic

The bulb outs will remove one parking spot on each side of $13^{\text {th }}$ Street where they are installed. This is so the sight triangle for the vehicles stopped at the cross streets with $13^{\text {th }}$ Street will be improved and drivers waiting to enter or cross $13^{\text {th }}$ Street will have a better view of approaching vehicles and bicycles on $13^{\text {th }}$ Street.

Bulb outs on the $13^{\text {th }}$ Street approaches to intersections were initially recommended for several locations to narrow the street width, reduce pedestrian crossing distance of the street, and improve sight triangles for vehicles stopped on the cross streets at intersections. These address several of the common comments received at and after PIM \# 1. As the project team reviewed and discussed the optimal locations, the following locations were identified for bulb out installation:

- The south approach to the $13^{\text {th }}$ Street and Resseguie Street intersection
- This bulb out is at an existing school crosswalk for North Junior High.
- A potential rectangular rapid flashing beacon (RRFB) may be included with this installation for enhanced school pedestrian visibility.
- The south approach to the $13^{\text {th }}$ Street and Alturas Street intersection
- This bulb out is at an existing crosswalk and would mirror the existing bulb out installed on north side of intersection at the south entrance to Hyde Park
- This bulb out may be installed on the south side of the Sherman Street intersection rather than at the Alturas Street intersection based on public feedback requesting that and the current VRT updates that may update the
prosed bus stop at Sherman Street. This decision will be made during the design phase of project development.
- The north and south approaches to the $13^{\text {th }}$ Street and Heron Street intersection
- These bulb outs are at existing crosswalks that serve pedestrian traffic to and from Camel's Back Park.
- The north approach to the $13^{\text {th }}$ Street and Hazel Street intersection
- This bulb out is at an existing crosswalk that serves pedestrian traffic to and from Camel's Back Park.
- The north approach to the $13^{\text {th }}$ Street and Bella Street intersection
- This bulb out is at an existing crosswalk that serves pedestrian traffic to and from Camel's Back Park. This bulb out will be extended to the south on the east side adjacent to the park to help guide pedestrians to the crosswalk and provide more visibility for pedestrians at the crosswalk.

Proposed installation locations and conceptual layouts are presented in Figure 5. All of these bulb outs will help calm traffic at each end of the study area where higher speeds have been documented and reported from several residents and stakeholders.

Cross Section Reduction

The segment of $13^{\text {th }}$ Street that transitions into Hill Road from Heron Street to $15^{\text {th }}$ Street has an issue with drivers traveling over the speed limit. This is attributed to the prohibition against on street parking along the Camel's Back Park frontage of $13^{\text {th }}$ Street and the wider street section from where the sidewalk ends on the east side of $13^{\text {th }}$ Street / Hill Road all the way to $15^{\text {th }}$ Street. Reducing this existing width by adding curb, gutter and sidewalk to provide 11 foot wide shared lanes for vehicles and bicycles will help slow traffic down and will match the character and operations of $13^{\text {th }}$ Street throughout the study area. These improvements are intended to be provided within the existing right-of-way. The proposed installation and conceptual layout, including existing and proposed cross sections, are presented in Figure 6.

Adjacent Infrastructure Separate Improvements

The existing sidewalk along Camel's Back Park adjacent to $13^{\text {th }}$ Street also serves as the lid to rectangular concrete flume carrying storm water to the north. This flume is relatively old and the lid has several cracks and other issues making it an uneven surface. Replacing this flume lid/sidewalk is difficult and outside this traffic calming concept study requirements. ACHD and the City of Boise are exploring opportunities to improve the flume and accompanying sidewalk. The improvements recommended in this concept study should be designed and constructed in coordination with the flume improvements.

Traffic Calming Implementation Map

Cross Section Reduction from Irene St. to 15th Street

Public Information Meeting \# 2

ACHD held the second PIM for this concept study on May 22, 2018. It started with a walking tour that began at the intersection of $13^{\text {th }}$ Street and Heron Street. Seventeen citizens arrived and received handouts showing the proposed traffic calming features recommended for implementation along $13^{\text {th }}$ Street as depicted in Figures 5 and 6. ACHD and HDR staff accompanied the citizens on the tour and stopped at the various implementation locations to discuss how they would be installed and receive feedback. The walking tour ended at North Junior High where a pop-up meeting was set up with larger displays of the proposed installations, study background, discussion of the concepts not carried forward, and the information from PIM \# 1 shown in Figure 3. These that attended generally agreed with the proposed traffic calming concepts and provided comments on specific ways and/or locations to install bulb out. Details of the feedback of attendees at the PIM and comments received are presented in Figure 7.

Estimated Costs

A conceptual cost estimate for the proposed traffic calming concepts for 13th Street is presented in Table 1. The cost estimates are based on several assumptions, concept level layouts and quantities, and 2018 prices. They are broken out separately for the bulb out installations and the new sidewalk along Hill Road. Materials for developing these improvements were assumed to generate a conceptual cost estimate. Specific design layouts, components, and materials will be determined during the design phase of project development and costs will be refined and adjusted during that phase.

Next Steps

ACHD staff will present the recommended traffic calming concepts to the ACHD Commission for consideration and review. After this presentation, the concepts will be presented to the Boise City Council. Once all comments have been addressed, the ACHD Commissions will consider adoption of the $13^{\text {th }}$ Street Traffic Calming concepts. If approved by the Commission, design will start on the concepts in the fall of 2018.

Figure 7 Public Meeting \#2 Results

$13^{\text {th }}$ Street Traffic Calming Study

May May 22, 2018

17

5:30 p.m. - 6:30 p.m. - Open House (held in front of 20 North Jr. High)

Project displays were posted on a Commuteride Van
2. .

9

"I like the installation of sidewalks on the north/east side coming around the curve from Camels Back and Hill Road."

"...bulb-outs are a nice solution. The biggest problem on 13th is the intersections. Visibility is a real problem for pedestrians and cars entering $13^{\text {th }}$."

Comments are summarized in the callouts with the light-bulb icon.

Bulb-out Comments

- Bulb-outs should have andscaping which is maintained by North End Neighborhood Association
- Concerns about conflicts when trucks and bikes meet at bulb-outs
- Evaluate effectiveness of temporary improvements before permanent installation

Resseguie Area Comments

- In addition to the recommendations, more bulb-outs or traffic calming measures are needed in this area
- Radar sign would be better in this area
- Recommend traffic islands at Ressgevie
and/or Ada and/or Eastman

W. Hill Rd. Comments
- Intersection at Irene \& !3th has a blind turn from Hill that seems dangerous
- Radar speed signs are needed on both sides of street

Comer Park

Table 1. $13^{\text {th }}$ Street Recommended Traffic Calming Conceptual Costs

Bulb Out Installation					
ISPWC Bid Item	Description	Units	Quantity	Unit Price	Cost
201.4.1.A. 1	Clearing and Grubbing	LS	1	\$5,000	\$5,000
201.4.1.C. 1	Removal of Obstructions	LS	1	\$2,500	\$3,000
706.4.1.A. 5	Standard 6" Vertical Curb \& Gutter	LF	925	\$25	\$24,000
706.4.1.E. 1	Concrete Sidewalk, 5" Thick	SY	645	\$70	\$46,000
706.4.1.H. 1	Pedestrian Ramp with Detectable Warning Domes, Type A	EA	22	\$2,000	\$44,000
1103.4.1.A. 1	Construction Traffic Control	LS	1	\$5,000	\$5,000
1131.01.01.A	Rectangular Rapid Flashing Beacon Complete	LS	1	\$20,000	\$20,000
1134.03.21	Pavement Markings (Paint)	SF	80	\$1	\$1,000
1134.05.18	Pavement Markings (Thermoplastic)	SF	1,510	\$10	\$16,000
1135.01.01	Roadside Traffic Sign Installation (One Metal Post)	EA	28	\$100	\$3,000
1135.01.05	Furnish Roadside Sign Face	SF	110	\$15	\$2,000
2010.4.1.A. 1	Mobilization	LS	1	\$19,000	\$19,000
SP 07013	Patterned Concrete	SY	292	\$50	\$15,000
SP XXXXX	Radar Speed Limit Signs	EA	2	\$3,000	\$6,000
	Design	LS	1	\$50,000	\$50,000
				Subtotal	\$182,000
	Contingency-20\%	LS	1	\$52,000	\$52,000
				Total	\$311,000
New Sidewalk along Hill Road					
ISPWC Bid Item	Description	Units	Quantity	Unit Price	Cost
201.4.1.A. 1	Clearing and Grubbing	LS	1	\$5,000	\$5,000
201.4.1.C. 1	Removal of Obstructions	LS	1	\$2,500	\$3,000
706.4.1.A. 5	Standard 6" Vertical Curb \& Gutter	LF	1,366	\$25	\$35,000
706.4.1.E. 1	Concrete Sidewalk, 5" Thick	SY	916	\$70	\$65,000
706.4.1.H. 1	Pedestrian Ramp with Detectable Warning Domes, Type A	EA	1	\$2,000	\$2,000
801.4.1.B.1*	6" Minus Uncrushed Aggregate Base	TN	277	\$12	\$4,000
802.4.1.B.1*	Crushed Aggregate for Base, Type I	TN	92	\$20	\$2,000
810.4.1.A.1*	Plant Mix Pavement, 4" thickness	TN	61	\$90	\$6,000
1103.4.1.A. 1	Construction Traffic Control	LS	1	\$7,500	\$8,000
1134.03.21	Pavement Markings (Paint)	SF	200	\$1	\$1,000
1135.01.01	Roadside Traffic Sign Installation (One Metal Post)	EA	2	\$100	\$1,000
1135.01.05	Furnish Roadside Sign Face	SF	40	\$15	\$1,000
2010.4.1.A. 1	Mobilization	LS	1	\$14,000	\$14,000
	Design	LS	1	\$30,000	\$30,000

Assumptions

- All prices in 2018 dollars
- "Assume 4" of asphalt, 6 " of $3 / 4$ " crushed aggregate for base, and 18 " of uncrushed aggregate for base
- All stop bar and pedestrian crossing pavement markings at bulb out intersections will be replaced
- No intersection layouts or calculations have been completed.
- Two new signs will be installed on each side of each street for each bulb out for parking
- Half of the signs will be $12^{\prime \prime} \times 18$ " and the other half will be 30 " $\times 30$ "
- Traffic control is assumed to be 2.5% of the materials total

 	$\begin{aligned} & 0-\exists \\ & , ~ \varepsilon-M \end{aligned}$	$\begin{aligned} & 0-3 \\ & .8-M \end{aligned}$	， S	，Ss	дәコдมร u！ әu티Int asn səy！！	ұәәдұร u！ วue！IInt asn sə＞！！	дәコдมร u！ әu티Int asn səy！！	дәコдมร u！ әu리IIIt asn səy！！	\wedge	\wedge	\wedge	\wedge	N	N	N	N	$\begin{gathered} \text { sep!s } \\ \text { чłoq } \\ \text { S A } \end{gathered}$	$\begin{aligned} & \text { s sepls } \\ & 7 \operatorname{sem} \lambda \end{aligned}$	N＇A	N＇र	ャع	ャع	N	N	4̊nequap！y uo dols	02	75 4 ${ }^{\text {anequapp！y }}$＇$M$
 	$\begin{aligned} & 0-3 \\ & , 0-M \end{aligned}$	$\begin{aligned} & 0-3 \\ & , 2-M \end{aligned}$	，LS	，Ls	zә2дมร әuㅌ．｜lnt әsn səx！！		zә2дมร әuㅌ．｜lnt әsn səx！！	zә2дมร әuㅌ．Int әsn səx！！	\wedge	\wedge	\wedge	\wedge	N	N	N	N	sep！ 15 4709	$\begin{aligned} & \text {, s כp!s } \\ & 7 \operatorname{sem} \lambda \end{aligned}$	N＇A	N＇＾	$\downarrow \varepsilon$	ャع	N	N	уэеqunля uo dols	02	75 \％\％qunns＇M
әuои	$\begin{aligned} & 0-3 \\ & , 0-M \end{aligned}$	$\begin{aligned} & 0-3 \\ & , 0-M \end{aligned}$	．85	， 4	әuе）IInt әsn səみ！！		 วsn səみ！！	әuㄹ．｜Int วsn səみ！！	1әицо MN	даило MS	$\begin{gathered} \text { дәиоо } \\ \text { IN } \end{gathered}$	$\begin{array}{\|c} \hline \text { дəu_о } \\ \text { Э } \end{array}$	N	N	N	N	$\left\|\begin{array}{c\|} \text { seanylv } \\ \text { of, st } \\ -, 0 \tau ~ \wedge \end{array}\right\|$	$\begin{aligned} & i t \text { әp!s } \\ & 7 \operatorname{sem} \lambda \end{aligned}$	N＇A	N＇人		วəร」วฉu！ 子e $\ddagger n o$ －qınq 	N	N	uo dols	02	＇7S uemisea M
әuои	$\begin{aligned} & 0-3 \\ & , 0-M \end{aligned}$	$\begin{aligned} & 0-3 \\ & , 0-M \end{aligned}$	．85	． 85	әu®）IInł วsn səy！！		әu®）॥nł asn səy！！	әu®）॥nł วsn səy！！			$\begin{gathered} \text { ләuло } \\ \exists \mathrm{N} \end{gathered}$	$\begin{array}{\|c} \text { ләu_о } \\ \text { ЭS } \end{array}$	N	N	N	N	sap！s 4709 ， 5 人		N＇A	N＇A	ャع	ャع	N	N	seanyiv uo dols	02	＇75 semply M
әuои	$\begin{aligned} & , 0-\exists \\ & , S-M \end{aligned}$	$\begin{aligned} & , 0-\exists \\ & , S-M \end{aligned}$	．85	． 85	ฉ2コスม auk）Int asn səy！！		auk）Int asn səy！！	әuㄹ．｜lint asn səみ！！	\wedge	\wedge	\wedge	\wedge	N	N	N	N	səp！s पł०q ，s 人		N＇A	N＇र	ャع	七\＆	N	N	иешдวчs uo dols	02	＇7S ueways＇M
әuои	$\begin{aligned} & , 0-\exists \\ & , \mathrm{S}-\mathrm{M} \end{aligned}$	$\begin{aligned} & , 0-\exists \\ & , \mathrm{S}-\mathrm{M} \end{aligned}$	．85	．85	ฉәコスม u！ әsn səみ！！	ฉววม） әuㄹ．｜Int วsn səみ！！	әu®）॥nł asn səy！！	әuㄹ．｜Int әsn səy！！	\wedge	\wedge	\wedge	\wedge	satenbs pzzuled saर	sə」enbs pəłu！̣ed sə人	N	N	$\left.\begin{array}{\|c\|} \hline \text { sə } \\ \text { p!s s } 7 \times 9 \\ 91 \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline \text { ap!s } \\ \text { 子sea } \\ .9 \text { !ap!s } \\ 45 \partial \mathrm{M} \\ .8 \AA \\ \hline \end{array}$	N＇A	N＇A	ャع	ャع	N	N	epy uo dots	02	75 ep ${ }^{\text {c }}$ M
 	$\begin{aligned} & \mathrm{S}-\mathrm{B} \\ & \mathrm{~S}-\mathrm{M} \end{aligned}$	$\begin{aligned} & .0-\exists \\ & , S-M \end{aligned}$	．29	． 85	ฉәวม） $4!$ әu®）IInt әsn səy！g	ฉәコス15 әu®）IInt asn səy！！	әu®）IInt asn səy！！	әu®）IInt әsn səy！！	\wedge	\wedge	\wedge	\wedge	sadulus pzzu！̣ed sa人	sadulus pztu！ed sa人	N	sadulus przuled sə人	$\begin{array}{\|c\|} \hline \text { 7sea } \\ \text { S } \mathrm{S} / \mathrm{sem} \\ \hline 8 \wedge \end{array}$	$\begin{array}{\|c\|} \hline \text { 7sea } \\ .5 / 45 a M \\ .81 \end{array}$	N＇A	N＇人	ャع	ャع	N	N	ə！̣กวassəy uo dols	02	＇75 a！n83s5zy＇M
	\forall / N	$\begin{aligned} & S-3 \\ & , 9-M \end{aligned}$	\forall / N	．t9	ฉәコスม u！ asn səみ！！	ฉәコมุ әu®）॥nł әsn səみ！！	ฉәコมุ әuㄹ）Inł， asn səみ！！	ฉәコスม u！ әuㄹ）Inł asn səみ！！	N	\wedge	N	\wedge	N	\wedge	N	\wedge		（дコиロо） sa！Ien＞ ⿺емәр！s \wedge	$\begin{gathered} \text { uo anoy } \\ \text { '’әp!s } \\ \text { tsem } \\ \text { su!yed } \\ \text { ou } \end{gathered}$	N	加	加	N	N	॥улено uo dols	02	
ио！рวәร」əди！ „о дегч чдои и！รәјочиеш 	$\begin{aligned} & \varepsilon-\exists \\ & , 0-M \end{aligned}$	\forall / N	， 62	\forall / N	әu®）॥nł」 asn sax！！	ฉә2มุร әu®）॥nł asn say！！	әu®）॥nł asn sax！！	әu®）In＇t әsn səy！！	\wedge	\wedge	\wedge	\wedge	sadulus pzzu！̣ed sə人	sadulus pazuled sə1	saduns pztuled sa久	sadulus pazuled sə人	$\left.\begin{array}{\|c\|} \hline \text { sәp!s } \\ \text { чł०q , } 8 \end{array} \right\rvert\,$	sap！s $470 q$ ． 91	N	\wedge	to	＋	． 88 ＾	．04入		02	＇TS H0：＇M
sчиәшшоэ	ymos	पมоผ	ymos	Yมon	${ }^{259} \mathrm{M}$	1533	чม๐ก	чınos	759M	${ }^{\text {553 }} 3$	บนо	чınos	som	253］	บนо	чınos	чม๐N	y \quad nos	чม๐	4ınos	чม๐ก	4．nos	чม๐	4ınos			
	$\begin{gathered} \text { quno/ } \\ \text { pu! } \end{gathered}$	$\begin{aligned} & \text { nәр!s } \\ & \text { noy } \end{aligned}$			¿əd＾	1 diuesadd		ค시¢	$¿^{\text {ad }}{ }_{1}$	zuasad	dures ue！	${ }^{1759 p}{ }^{\text {d }}$	$¿^{\text {adA }}$	$1{ }^{\text {chuesad }}$	Id snlemss	5 5		！！M youty sad әр！		supysed －uo		jo dot fo doz） дәадя	¿42จันәา sheq		ןодииоэ 	（4dw） ม！ய！！！ pazds	720．45 5soun

әиои	， C ， $\mathrm{S}-\mathrm{M}$	，	．07	． 26					N	N			N	N	N	N	$\begin{aligned} & \text { s әp!s } \\ & \text { tsem } \end{aligned}$	$\begin{aligned} & .9 \text { әр!s } \\ & \text { tsom } 1 \end{aligned}$		N＇र	てะ	ャع	N	N	วua』 uo dols	02	
әиои	$\begin{aligned} & 0-3 \\ & , \mathrm{~S}-\mathrm{M} \end{aligned}$	$\begin{aligned} & 0-\mathrm{B} \\ & 9-\mathrm{M} \end{aligned}$	．07	．0t						N	дәило MN	$\begin{gathered} \text { дәиоо } \\ \text { MS } \end{gathered}$	N	N	sadulus pazu！ed sə＾	N	$\begin{aligned} & \text {, s əp!s } \\ & \text { tsem } \end{aligned}$	$\begin{aligned} & \text { s ap!s } \\ & \text { tsan } 1 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { әpıs } \\ \text { \$sea } \\ \text { gu!yued } \\ \text { ou } \end{array}$	$u^{\prime} 1$	$\downarrow \varepsilon$	ャع	N	N	${ }^{\text {｜l｜Pa }}$ uo dols	02	
әиои	$\begin{aligned} & \mathrm{O}-\mathrm{B} \\ & . \mathrm{S}-\mathrm{M} \end{aligned}$	$\begin{aligned} & .0-3 \\ & . \mathrm{S}-\mathrm{M} \end{aligned}$	．08	．0t			әue｜Int әsn sax！g			N	дәицо MN	$\begin{gathered} \text { дәи夫о } \\ \text { MS } \end{gathered}$	N	N	sad！ułs pazu！̣ed sa久	N	$\begin{aligned} & \text { s } \mathrm{s} \text { әp!s } \\ & \text { tsan } 1 \end{aligned}$	$\begin{aligned} & \text { s apıs } \\ & \text { tsam } \end{aligned}$	әp！s 1sea su！pued ou ou	$u^{\prime \prime}$	七¢	ャع	N	N	ןәден uo dols	02	＇15 18zen＇M
	$\begin{aligned} & , 0-3 \\ & , 8-M \end{aligned}$, O-3	，ss	．0t					$\begin{gathered} \text { дәицо } \\ \text { ЭS } \end{gathered}$	$\begin{gathered} \text { Jauo כی } \\ \text { قN } \end{gathered}$	дәицоэ MN	ләилој MS	N	N	sadulus pazuled sə＾	səduns pzzuled sə＾	sәp！s ч 7 ㅇ ，S 1	$\begin{aligned} & \text { s s ap!s } \\ & \text { isom } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { әp!s } \\ \text { tsea } \\ \text { gu!yued } \\ \text { ou } \end{array}$	$u^{\prime} \times$	ャع	ャع	N	N	чоддн uo dols	02	＇75 บо．ä＇M
әиои	$\begin{aligned} & 0-3 \\ & , L-M \end{aligned}$	$\begin{aligned} & 0-3 \\ & , 8-M \end{aligned}$	，ss	，ss	ฉәәдมุร u！ әu®！IInJ os sar әsn səy！！	ฉәәдมร әu®！॥nt os sar әsn səy！！	ฉәәдมร әu®！॥nt os sar әsn səy！！	ฉәәдมร әu®！॥nł os sar әsn səy！！	\wedge		дәицо MN	$\begin{gathered} \text { дәи夫о } \\ \text { MS } \end{gathered}$	N	N	N	N	sap！s 4709 ， 51	$\begin{aligned} & \text { s ap!s } \\ & t \operatorname{sen} \mathrm{~A} \end{aligned}$	N＇A	N＇र	ャع	ャع	N	N	dшәา uo dols	02	＇75 duә7 M
stuәшш⿺𠃊	чınos	บมо	y 2 nos	บม०N	${ }^{259 \mathrm{M}}$	3533	чม๐	чınos	${ }^{\text {250M }}$	${ }^{253} 3$	чมо	ynnos	${ }^{35} \mathrm{M}$	${ }^{258} 3$	чม๐	чınos	чม๐	ymos	чมо	yınos	บมํา	ynnos	чมо	4ınos			
	quno／ pu！ 4	мәр！s MOY			¿əd	1 ¿zuasad	รวุ！11	pNu，	$¿^{\text {ad }}$ ¢ \perp	auasad s	sdues ue，	${ }^{1459 p \text { ad }}$		$1{ }^{\text {a }}$ 2uas	d sy｜ems	50			¿рамо॥е ¿и！ ไ2コュ	supysed －uo	$\begin{array}{r} \text { (H) } \\ \text { (qun) }\} \\ \text { Oqquno } \\ \text { पIP!M } \end{array}$	odo fo doz） วәals	$\begin{gathered} \text { ¿42 } \\ \text { s^equ } \end{gathered}$	¿zuasa．d ที มวา	ןодйо 	（ydu） ท！ய！！ paods	270．45 580.0

